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Abstract— The Naval Oceanographic Office uses the Navy
Coupled Ocean Data Assimilation (NCODA) system to per-
form data assimilation for ocean modeling. Currently the
system uses a 3D multivariate optimum interpolation (3D
MVOI) algorithm to produce outputs of temperature, salinity,
geopotential, and u/v velocity. NCODA is run in a stand–
alone mode to support automated ocean data quality control
(NCODA OcnQC) and to test software updates. NCODA is
also coupled with the Regional/Global Navy Coastal Ocean
Model (RNCOM/GNCOM). The RNCOM/NCODA system
is being used as part of an Adaptive Sampling and Predic-
tion (ASAP) pre–operational project, that makes use of the
Ensemble Transform (ET) and Ensemble Transform Kalman
Filter (ET KF) applied to ensemble runs of the RNCOM.
The ET KF is used to predict the posterior error covariances
resulting from possible profile measurements. These results
aid in predicting the impact of ocean observations on the
future analysis, and thus allow the direction of limited assets
to areas that will have the maximum gain (for applications
such as ocean acoustics). A review of these systems will
be given as well as examples of the metrics used for the
RNCOM/NCODA system, ensemble modeling, and ASAP.

I. NCODA

The Naval Oceanographic Office uses the Navy Cou-
pled Ocean Data Assimilation (NCODA) system [1] to
perform data assimilation for ocean modeling. This sys-
tem is implemented on the supercomputer configura-
tion of the Navy DoD Supercomputing Resource Center
(Navy DSRC). The NCODA analysis is running in both a
(1) stand–alone mode (NCODA-SA) to support real–time
automated ocean data quality control (NCODA OcnQC)
and to test software updates, as well as (2) coupled
with the Global Navy Coastal Ocean Model (GNCOM)
(GNCOM/NCODA) and Regional Navy Coastal Ocean
Model (RNCOM) (RNCOM/NCODA).

The NCODA system consists of a frontend ocean data
quality control (NCODA OcnQC) program that feeds
an analysis program (NCODA Analysis). Currently the

analysis system is based upon a 3D multivariate opti-
mum interpolation (3D MVOI) algorithm [2] to produce
3D output fields of temperature, salinity, geopotential,
and geostrophic u/v velocity (T, S, Φ, U, V). NCODA
can be used for global or regional applications and is
relocatable with the ability to have multi–scale analysis
nests (with successively higher resolution grids in a
3:1 nest ratio).

A. NCODA Implementation

The NCODA OcnQC is run on a 6–hour schedule
for feeding the NCODA-SA, RNCOM/NCODA, and
GNCOM/NCODA systems. Part of NCODA OcnQC is
the running of 2D OI analyses of sea–surface tempera-
ture (SST) and sea ice in order to QC SST and sea ice
observations. These are performed in the arctic on a
9 km polar stereographic grid and globally on a 9–12
km Mercator grid (midlatitude versus equatorial grid
spacing). The output of a previous NCODA Analysis
can also be used as a background field for QC of in situ
profile observations.

The NCODA Analysis (with and without coupling
with an ocean model) is run on a 24 hour schedule. The
global analysis is performed on a 12–18 km Mercator
grid (1/6◦), with future plans of 9–13.5 km grid (1/8◦).
Regional NCODAs can be run on a variety of grids, but
in general are either on a Mercator or spherical projection
at a nominal 3 km grid resolution.

The data and process flow of the NCODA system can
be seen in figure 1. The raw observations are processed
by the NCODA OcnQC and assigned “probability of
error” (POE) values. The data and its associated POE
values input to the NCODA Analysis. Within the anal-
ysis the POE values are used to omit errant data and are
also used in assigning weights to the data. The output of
the analysis is given to an ocean model either as 3D fields
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Fig. 1. RNCOM/NCODA data flowchart.

or 3D increments. The ocean model assimilates these
fields and produces forecast(s) that can then be used for
future quality control tests or for other purposes such as
adaptive sampling. Additional details of this flowchart
will be explained below.

B. NCODA Runtimes

Part of the NCODA implementation process was to
determine how many processors on the Navy DSRC
were optimal for running NCODA [3]. On the DSRC
system, each processor consisted of 8 CPUs. Tests were
done for three CPU configurations to determine how
the runtimes responded. The NCODA code is a mixture
of serial and parallel code. As such there is a limit to
how fast the code can be run. In figure 2 an example
is shown of the runtimes for the NCODA-SA Global3D
region with 8 processors. Runtimes are affected by (1) the
size of state vector (proportional to the number of grid
points), (2) the number of CPUs, and (3) the number of
input observations.
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Fig. 2. NCODA Analysis Global3D 8 processors.

Each NCODA region runs a combination of 2D and
3D serial and parallel processes. The preprocessing and
postprocessing is serial, while the analysis has some

parallel code. The 2D processes involve 2D OI of SST
and SSHA. The 3D processes are concerned with the
3D MVOI analysis and its results. In figure 2 the 2D
preparation is shown in yellow, 2D analysis in cyan, 2D
postprocessing in magenta, 3D preparation in blue, 3D
analysis in green, and 3D postprocessing in red. It is
readily apparent that the majority of the runtime is spent
in the 3D MVOI.

The following table summarizes the results for 8,
16, and 32 processors (64, 128, 256 CPUs). Shown is
the average analysis runtime, not including pre/post–
processing (the pre/post–processing is serial, while the
analysis is partly parallelized).

3D Global Analysis Runtime Improvement
CPU Runtime (minutes) Decrease

(minutes)

64 40 –
128 25 15
256 20 5

The speedup of the NCODA OI/MVOI analysis using
multiple processors in parallel is limited by the time
needed for executing the serial portion of the program
and how efficient the parallelizing is. Amdahl’s law [4]
can be used to find the maximum expected improvement
to the NCODA runtime when only part of the system can
be improved.

Write Amdahl’s Law as SPEEDUP = 1
1−P , where

SPEEDUP is the potential program speedup if a P
fraction of code can be parallelized. The results for the
runtimes of Global2D OI and Global3D MVOI are shown
in the following table. Gains for the second doubling
are half of the first, perhaps because (1) the parallelizing
could be improved and (2) the scalability of parallelizing
is reaching its limit. Based upon the results shown
in the these two tables and the current configuration
limitations, generally the NCODA 2D is run with 32 or
64 CPUs, while the NCODA 3D is run with 128 CPUs.

REGION ∆ CPU Speedup Parallelizable

Global2D 64 to 128 1.75 43 %
Global2D 128 to 256 1.28 23 %
Global3D 64 to 128 1.62 38 %
Global3D 128 to 256 1.26 21 %

C. NCODA OcnQC

Quality control (QC) of oceanic observations is an
important requirement for the running of the NCODA
system [5]. Errant data must be flagged, similar data
must be pooled, overly abundant data must be thinned,
and duplicate data must be eliminated. In this process,
valid but extreme data values are hopefully retained. The
ultimate goal of the QC is to feed “clean” data to the
analysis algorithm so that the output of the analysis will
not be misleading and the possibility of making wrong
decisions is reduced or eliminated.



QC of profile data is of particular importance due to
the need for information at depth and the small number
of profiles relative to other data types. A sequence of
gross–error data checks are performed including valid–
value range tests, land–sea checks (being implemented),
and location (speed) tests (being implemented). A series
of instrumentation error checks are then performed,
such as a sensor drift check. Cross validation checks
are performed to ensure the consistency of observations
within and between analysis variables. In the within–
variable consistency check, an OI analysis is performed
at the profile location, based upon nearby valid data (and
excluding the datum being checked).

The last (and most important) check before the anal-
ysis is the background–field checks. The background
field checks can involve climatology, global and regional
analyses, or short–term forecasts. The background fields
and background error fields closest in time to the datum
are interpolated to its position. The probability of an
erroneous value (the “probability of error” or POE) is
calculated from the anomalies of the background fields
with respect to the datum [5].

Figure 3 displays several of the background fields used
in computing the POE, which is computed both as an
overall value and a function of depth.

A final QC check is done within the analysis to re-
move any data that have passed the previous checks.
The normalized innovation corresponding to the data
is tested against the analysis background, and if it is
beyond a predefined number of standard deviations,
the data (innovation) is rejected. This assumes that the
background error covariance (Pb) and observation error
covariance (R) are reasonably known. It is best to use
a high tolerance value, and four standard deviations is
commonly specified.

D. NCODA Analysis

The NCODA 3D MVOI algorithm is formulated in
observation space as follows (with definitions in the
following table):

xa = xb + PbHT[HPbHT + R]−1[y − H(xb)]

y Observation Vector
xb Background Vector
xa Analysis Vector

H, H Forward Operator, Matrix1

R Observation Error Covariance
Pb Background Error Covariance

y − H(xb) Innovation Vector
y − H(xa) Residual Vector
xa − xb Increment Vector

1 The Forward Operator H is a method of converting a

forecast model variable to an observed variable. For NCODA

the observations and forecast variables are the same, and H
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Fig. 3. NCODA OcnQC profile plot. Displayed are the profile and the
anomaly with respect to the profile. The “probability of error” (POE)
is given both as a function of depth (yellow curve) and as an overall
value.

reduces to a spatial interpolation.

The analysis increment is equivalently defined
by PbHT[HPbHT + R]−1[y − H(xb)]. The quantity
PbHT[HPbHT +R]−1 is the weight matrix (also commonly
called the Kalman gain matrix). Within the 3D MVOI
algorithm, the variables are constrained such that
hydrostatic balance and geostrophy are maintained.

The solution of the MVOI equation is carried out
by an overlapping volume approach [6]. Eight volume
solutions are computed for each analysis grid point,
with each one weighted by its distance from the volume
center. The volume sizes are a function of the local cor-
relation length–scale, such that eight correlation length–
scales are used. Smooth analysis increments result from
this combinition of overlapping volumes and multiple
correlation length–scales within a volume.

The background and observation error covariances
(Pb and R) are separated into an error variance and
a correlation [1]. The correlations are further separated
into horizontal (Ch) and vertical (Cv) components. A
tunable flow–dependent correlation is also introduced at
this point (C f ). The total background error correlation is
then represented as

Cb = ChCvC f

The default horizontal correlation length–scale used
by NCODA is the (location–dependent) first order baro-
clinic Rossby radius of deformation (see figure 4). This
horizontal correlation length–scale can be either scaled



or replaced by user–preferred values (such as those
produced by the ensemble method in section IV).

The vertical correlation length–scales can (1) be con-
stant, (2) monotonically increase or decrease with depth,
or (3) vary with the background vertical density gra-
dient. The third option allows the vertical correlation
length–scale to be large when the water column stratifi-
cation is weak, or small when the stratification is strong.
It may be represented as

hv = ρs/(∂ρ/∂z)

where hv is the resulting vertical correlation length–scale,
ρs is a “change in density stability criterion” (which
defines a well–mixed layer), and ∂ρ/∂z is the vertical
density gradient.

The flow–dependent correlation is computed from a
scaling of the geopotential height difference between
two locations. This flow–dependence affects both the
horizontal and vertical correlations. Theoretically other
fields that give a good indication of the flow–field could
also be used.

The NCODA covariances can thus be “tuned” for
regional applications by using regionally dependent (1)
horizontal and vertical correlation length–scales, and (2)
flow–dependence.

Fig. 4. NCODA’s location–dependent default horizontal correlation
length–scale based on the first order baroclinic Rossby radius of
deformation (figure courtesy of Jim Cummings).

An important part of the NCODA system is keeping
track of the data and analysis mismatches to aid in
computing a reliable estimate of the background errors.
To facilitate this, there are three items of particular
interest for which NCODA keeps a time history: the
data error, the predicted background error, and an innovation
error check (the innovation error check will be covered
in section III-A).

The data error is a weighted running sum of squares
from a time history of the analyzed increment fields.
These are used to compute the background errors of the
appropriate analysis variables.

The predicted background error is computed from a
weighted time history of the analyzed increment fields,
the data error fields, and the climatological or model

error field. It is also referred to as a prediction or
forecast error, since it is the error attached to the MVOI
background field, which is commonly obtained from the
forecast of an ocean model. The predicted background
error (eb) is computed by

e2
b =β · ((

n

∑
k=1

wk(xa − xb)
2
k) + wn+1〈(xa − xb)

2〉)

+ (1 − β) · σ2
b

with β = exp(−τ/τc)2 . τ is the age of the data.
τc adjusts the rate at which the background error ap-
proaches the climatological or model error in the absence
of observations. Time scales range from ≈10 days for
surface– and mixed–layer variables to ≈30 days for
variables at depth. n is the number of days in the past
to use in computing the weighted summation (with k
being the day index). wk are weight functions defined
by wk = (1 − φ)k−1, with φ an adjustable tuning factor.
The brackets 〈. . .〉 represent a long–term mean increment
vector. σb is the expected error in the analysis variable
in the long–term absence of observations.

NCODA keeps track of the observation age (at all
model grid points) used in computing the predicted
background error. An update to any variable in the
MVOI analysis (from an observation) results in an up-
date to the observation age of all related variables. Figure
5 is an example of the observation age at 200 meter in
the North Atlantic. Since updates at depth occur only
from in situ profiles or synthetic bathythermographs,
grid points at depth are updated less often than those
near the surface. However, there is also less oceanic
activity at depth, and so the fields at depth are closer to
climatology than those at the surface. An example of the
resulting predicted background error for SST is shown
in figure 6, with the largest errors occurring mostly in
the regions of largest mesoscale activity.

Prior to the 3D MVOI, 2D OI analyses of sea–surface
temperature (SST), sea–surface height anomaly (SSHA),
and sea ice are performed. The 2D OI preprocessing of
the SST data is done to reduce the runtime of the 3D
MVOI. The 2D OI of the SSHA data is done in order
to determine at which locations to produce synthetic
bathythermographs as a means of communicating the
ocean topographic information to the subsurface.

Before the SST data are passed to the 3D MVOI
(upper–left plot in figure 7), they are preprocessed by
a 2D OI. The output of the 2D OI is an SST increment
(lower–left plot in figure 7) to which a threshold is
applied and then a subsampling is performed (upper–
right plot in figure 7). The resulting SST data are then
passed on to the 3D MVOI. The resulting temperature
increment at the surface (lower–right plot in figure 7) is
seen to be almost identical to the SST increment in which



all the SST data were used. This preprocessing results in
a very large time savings in running the 3D MVOI.

An important part of NCODA is the transfer of oceanic
topographic information to the subsurface. This is done
by means of synthetic bathythermographic (BT) pro-
files. These profiles can be created by two methods:
Cooper/Haines [7], and the Modular Ocean Data Assim-
ilation System (MODAS) [8].

Fig. 5. An example of the “observation age” variable (at 200–meters)
which NCODA uses to determine how much to relax a variable to
climatological values. The observation age (at a grid point) is affected
by updates to any of the related MVOI variables.

Fig. 6. An example of the “predicted background error” for SST.

SST Increments                                Surface Temperature Increments

Satellite SST (92,989)                              Sampled SST (14,228)

Selection Criteria:      GT 0.1 qC, sample every 4th grid node

Fig. 7. Prior to the 3D MVOI of the NCODA Analysis, the original SST
data are passed through a 2D OI that thresholds and subsamples it
(figure courtesy of Jim Cummings).

The Cooper/Haines method (“direct method”) needs
an ocean forecast model. It adjusts the forecast den-
sity profile to be consistent with the change in SSHA
(as measured by the altimeters). The temperature and
salinity are computed simultaneously, and the water
mass properties on subsurface isopycnals are conserved.
Observation errors are computed from prior estimates
and/or the analysis error variance plus the residual error
from an iterative fit of the density adjustment.

The MODAS method is independent of an ocean
forecast model. It computes temperature at depth
from stored regressions (empirical orthogonal functions
(EOFs)) between anomalies of climatological tempera-
ture and dynamic height. Salinity values are computed
from climatological relationships between temperature
and salinity. Observation errors are computed from prior
estimates and/or the regression residuals.

Note that both methods generate temperature and sa-
linity at depth using SSHA and SST predictor variables.
A strong point of the Cooper/Haines method is that
it does not introduce spurious water masses into the
model. However, it cannot correct for long–term drift of
water mass characteristics in the model. Given a good
ocean forecast model, the Cooper/Haines method may
be preferred [1]. The RNCOM/NCODA system uses the
MODAS method at this time. When NCODA is run
in stand–alone mode, the MODAS method is the only
applicable option.

Both methods make synthetic BTs at locations deter-
mined by a 2D OI of SSHA prior to the 3D MVOI. Figure
8 shows an example of an SSHA increment. At locations
where the absolute value of the increment is larger than
a preset “noise” value (for example 2.0 centimeters),
a cross–hatched subsampling will be performed (see
figure 9). The resulting grid spacing is also adjustable.
By means of these two parameters (along with the
correlation length–scales) the influence of the altimetry
can be adjusted.



II. NCODA COUPLED WITH GNCOM

The Global Navy Coastal Ocean Model (GNCOM) [9]
makes use of several ocean models and data assimilation
systems to accomplish its prediction of ocean forecasts.
These include the Global Navy Layered Ocean Model
(GNLOM) [10], the 2D OI capability of MODAS [11],
the 3D OI capability of MODAS [8], and the MVOI
method of NCODA [1]. The relationship of these systems
is shown in figure 10.

GNCOM encompasses the open ocean to 5 m depth

Fig. 8. An example of a 2D SSHA increment output from the 2D OI
preprocessing of the NCODA Analysis .

Fig. 9. After applying a height threshold test to the 2D SSHA increment,
a grid of locations is generated, which will dictate where synthetic BTs
will be created for input to the 3D MVOI analysis.
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Fig. 10. GNCOM/NCODA data flowchart.

in a curvilinear global grid with 1/8 degree grid spacing
at 45 N, extending from 80 S to a complete arctic cap
with grid singularities mapped into Canada and Russia
[12]. The model employs 40 vertical Sigma/Z levels, with
Sigma in the upper ocean and coastal regions, and Z in
the deeper ocean. The real–time systems (GNCOM and
GNLOM) are forced with the global 1/2◦ Navy Opera-
tional Global Atmospheric Prediction System (NOGAPS)
[13].

The input observations to GNCOM follow two dif-
ferent processing paths, with the result of each path
producing 3D temperature and salinity profiles. Satellite
SST are processed by the 2D OI of MODAS 2D. Altimetry
is input to GNLOM, which outputs 2D fields of SSHA
and mixed layer depth (MLD). These are combined with
the 2D SST output of MODAS 2D to form the inputs
to MODAS 3D. MODAS 3D then creates global 3D
synthetic temperature and salinity fields that become the
background (first guess) field of the NCODA 3D MVOI.

The in situ temperature and salinity observations from
gliders, buoys, etc. are processed by the NCODA OcnQC
(section I-C). These correspond to the observation vector
mentioned previously (y in the 3D MVOI equation).
The background field produced by MODAS 3D (H(xb))
is subtracted from these observations to produce the
innovations that are transformed by the 3D MVOI into
the output increment. These innovations are computed
without the First Guess at Appropriate Time (FGAT)
method of section III. This increment is added to the
input background field to produce a 3D temperature and
salinity field. GNCOM is relaxed to this field over a three
day hindcast.

This global ocean prediction strategy [14] satisfies the
need for ocean models to have a high horizontal reso-
lution (required to successfully simulate the variability
of mesoscale features) and a high vertical resolution
(required near the surface to resolve the physics of the
upper ocean) [15]. This first generation global ocean pre-



diction system meets these needs by combining GNLOM
(for high horizontal resolution) and GNCOM (for high
vertical resolution).

GNCOM produces forecasts of up to 72 hours. Its
output is used as boundary and initial conditions for
nesting the higher resolution RNCOM/NCODA system
(to be discussed in section III) inside of it. Since GNCOM
does not include tides, these are introduced from an
external tidal database when GNCOM is coupled with
a nested RNCOM/NCODA system.

III. NCODA COUPLED WITH RNCOM

The Regional Navy Coastal Ocean Model (RNCOM)
[16] is the Navy’s choice for high resolution applications.
It is based on the Princeton Ocean Model [17], combining
Sigma–layers and Z–levels [18], permitting use of a
hybrid vertical coordinate system [15]. The vertical grid
is set up to offer a choice of Sigma–layers or Z–levels,
or some combination with Sigma–layers in the shallow
water and Z–levels in the deeper water. A typical imple-
mentation of RNCOM may be at 1/32 or 1/64 degree
resolution, with 45 levels (15 Sigma–layers and 30 Z–
levels), and forecasts from 72 to 96 hours. The model is
forced with the high resolution regional Coupled Ocean
Atmosphere Mesoscale Prediction System (COAMPS)
[19].

RNCOM takes its boundary conditions (BC) from
GNCOM. Since GNCOM does not include tides, they are
introduced by adding tidal heights and transports to the
BC (from the Oregon State University tide model [20]).
Internal to an RNCOM domain, tidal forcing is done via
the tidal potential.

NCODA is the data assimilation system used by RN-
COM. The data flow of the RNCOM/NCODA system
was shown in figure 1 of section I-A. All of the raw
observations pass through the NCODA OcnQC system
as detailed in section I-C. With RNCOM the innovations
are computed using the forecast from yesterday that
is closest in time to the observation (the First Guess
at Appropriate Time (FGAT) method). The background
(first guess) field of the MVOI is the 24–hour forecast
from yesterday. The temperature and salinity increment
fields produced by the 3D MVOI are what is used by
RNCOM (in contrast to GNCOM).

In order to minimize spurious gravity waves (result-
ing from introducing an unbalanced increment into the
model), the RNCOM/NCODA system uses an ”incre-
mental (analysis) updating” (or data insertion) method
of assimilating the temperature and salinity increments
(see figure 11). This is accomplished by a 24–hour hind-
cast that starts with yesterday’s nowcast and gradually
inserts the temperature and salinity increments. The
velocity fields are allowed to adjust via geostrophy.

Background Field

Increments

Day N

Day N+1

Day N+2

−24 0 +24 +48

−24 0 +24 +48

−24 0 +24 +48

Fig. 11. The RNCOM/NCODA system uses an ”incremental (analysis)
updating” (or data insertion) method of assimilating the temperature
(T) and salinity (S) increments. The T,S increments are gradually
inserted during a 24–hour hindcast. This helps maintain dynamic
balance and cut down on spurious gravity waves.

A. RNCOM/NCODA Metrics

The performance of the RNCOM/NCODA system can
be monitored by several graphics. In figure 12 are shown
profile plots of the temperature fields from the in situ
observation (Obs), NCODA analysis (Anal), RNCOM
nowcast (NCST) for today, RNCOM 24–hour forecast
(FCST) from yesterday, GDEM climatology (Clim), and
the background field (BG) with its associated error (E).
Recall that the NCODA analysis increment is passed
to the RNCOM model, which gradually inserts it over
a 24–hour hindcast to produce the nowcast for today.
The background field (BG) is the FGAT field used when
computing the innovation for input to the analysis.
Figure 13 is an anomaly plot of the same quantities
with respect to the in situ observation. Note that in
the anomaly plot the “background anomaly” is actually
the “innovation”, which is used by the analysis with
appropriate weighting based on its probability of error
values.

Fig. 12. Profile plots of the temperature fields from the in situ obser-
vation, NCODA analysis, and the RNCOM nowcast and forecast.



Fig. 13. Profile plots of the anomaly fields (difference from the in
situ observation) from (1) the NCODA analysis and (2) the RNCOM
nowcast and forecast. Overall RMS values are shown within the
legend. Note that the background anomaly (B–O) is the innovation
computed using FGAT. In general the analysis should have the best fit
to the data, but the nowcast should have the best dynamical balance.

How well the system is removing any bias and re-
ducing the root–mean–square (RMS) variability is also
monitored. Scatter plots are made showing the results
before and after the analysis, which correspond to the
statistics of the innovations (before) and the statistics of
the residuals (after). Figure 14 is an example of a regional
SST analysis where a large bias was corrected and the
RMS was significantly reduced. An example of tracking
the regional RMS–at–depth over time is shown in figure
15. In this case for the Hawaii region, the RMS signals
seem to contain a 48–hour signal, with the largest RMS
values occurring at depths where the internal tides have
the most effect.

Fig. 14. Scatter plots of matchup statistics before (blue) and after (red)
the NCODA Analysis.

IV. RNCOM/NCODA ENSEMBLES AND ASAP

Recall in section I-D that NCODA is able to introduce
flow–dependence into the data assimilation by means of
a flow–dependent correlation (C f ). An improved method

Fig. 15. The residual RMS of the NCODA temperature analysis over
time (as a regional average) is studied. The residual RMS is largest
between 100 and 300 meters in this region around Hawaii, with
maximum variations likely occurring where internal tides have the
most effect.

of determining the flow–dependence is to have an en-
semble of ocean model runs valid at the same times.
This will allow a better estimation of the background
error (variance).

The results of ensemble forecast runs will not only
give better estimates of background errors, but can also
provide estimates of future errors (in sound speed vari-
ability, etc.), which can be used to predict where obser-
vations should be taken now in order to reduce those
errors. This is important when the Navy must decide
how and when to deploy a limited number of assets
in order to attain a better knowledge of the battlespace
environment.

To accomplish this, the RNCOM/NCODA system is
being used as part of an Adaptive Sampling and Pre-
diction (ASAP) project that makes use of the Ensemble
Transform (ET) and Ensemble Transform Kalman Filter
(ET KF) applied to ensemble runs of the RNCOM.

Letting ǫ represent the error (uncertainty) in a quan-
tity, the error in a RNCOM forecast may be represented
as follows:

ǫForecast = ǫForcing + ǫIC +

Not Yet Included
︷ ︸︸ ︷

ǫBC + ǫModel + ǫTurbulence

There are other terms that could be included, such as er-
rors in the bathymetry and sub–grid variability. Only the
first two sources of error are implemented at this time.
Thus, the ensemble generation for RNCOM/NCODA is
done by perturbing the forcing and initial conditions.

Perturbation of the forcing takes the form of a space–
time deformation of the atmospheric forcing [21]. This
results in an ensemble of atmospheric states – an inde-
pendent atmospheric forcing for each RNCOM ensemble
member.

Perturbation of the initial conditions (IC) is done by
the Ensemble Transform (ET) technique [22] [23]. The
ET method uses the best available estimate of analysis



error covariance to transform forecast perturbations into
analysis perturbations by finding K distinct linear com-
binations of K forecast perturbations that (1) are equally
likely, (2) lie within the vector subspace of forecast per-
turbations, (3) are quasi–orthogonal (although they sum
to zero), and (4) have expected squared amplitudes equal
to the trace of the best available estimate of the analysis
error covariance matrix. For the current work, the best
available estimate of the analysis error covariance is
obtained from the NCODA analysis error.

The K perturbations to the IC are then added to the
RNCOM control run to produce K initial states. These K
initial states (ensemble members) are then integrated for-
ward in time with their respective atmospheric forcings
to produce K forecasts. These forecasts are used with the
ET KF technique for ASAP purposes [24]. At this point
the process can be restarted for the next ASAP run.

The use of the RNCOM/NCODA system for ASAP
has been done for several ocean measurement exercises
[25] [26] [27] [28]. To make the ability to perform ASAP
and adjust the parameters it uses more accessible to
the warfighter, a software system called “Targeted Ob-
servations for Forecast Uncertainty (TOFU)” has been
developed [25] [27]. It creates metrics that can be used
for ASAP, and that also assess how well the ASAP is
performing.

The TOFU system produces “Target Observations
Summary (TOSum)” maps as shown in figure 16. These
display the relative impact of each possible temperature–
salinity profile observation in reducing the predicted er-
rors of a set of target variables (such as sonic layer depth
and below layer gradient) over a user–specified target
area and for a given target forecast time. These maps
can then be integrated with other criteria to optimally
design, deploy, and update local observation networks
that will provide the best accuracy of ocean dynamic
inputs into end user applications.

In the case of figure 16, the red box outlines the target
area. There are four gliders, with three within the target
area. The possible deployments of each glider (taking
account of ocean currents) are shown by white lines. Red
areas on the map indicate locations where measurements
will have a large relative impact on reducing the forecast
error (uncertainty) within the target region. Blue areas
will have a small impact.

V. FUTURE NCODA ENHANCEMENTS

The data assimilation algorithm used by NCODA is
being updated in several stages. The first transition
will be to a 3D variational (3DVar) approach [29]. The
equation to be solved is the same as the one given
in section I-D, but using variational techniques. The
techniques will come from the NRL Atmospheric Vari-
ational Data Assimilation System (NAVDAS), which is
an observation–space based 3DVar system for generating
atmospheric state estimates. NAVDAS permits the direct

Fig. 16. TOSum map for three gliders, showing possible deployments
of the gliders and the relative impact of each upon the target area (red
box).

assimilation of satellite radiances, which have resulted
in significant forecast improvements at other forecast
centers [30].

The next transition will be to a 4D variational (4DVar)
approach [31] applied to the RNCOM model [32]. This
4DVar approach will be based upon the “Cycling Repre-
senter Method”. In this method RNCOM is linearized
about a background state using tangent linearization.
The stability of this tangent linearized model (TLM) is a
very sensitive function of the background state, the level
of nonlinearity of the model, open boundary conditions,
and the complexity of the bathymetry and flow field.
Based on the TLM stability time period, the Representer
Method is cycled by splitting the time period of the
assimilation problem into short intervals. The interval
time period needs to be such that it is short enough
for the TLM to be stable, but long enough to minimize
the loss of information due to reducing the temporal
correlation of the dynamics and data.
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